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INVARIANT CLUSTERING USING SCATTERING MATRICES

INTRODUCTION

When dealing with practical clustering problems, one of the most difficult choices is the choice
of the distance metric. This problem exists because if an object is described by n measurements
involving different units, the Euclidean metric normally used has little or no meaning. For instance,
electronic-warfare-support-measure (ESM) equipment may characterize a radar signal by its
frequency in gigahertz, its interpulse period in milliseconds, and its pulse width in microseconds.
Given signals from two agile (frequency, PRF, and pulse width) radars, a natural question is what
signals are being generated by what radars.

All clustering algorithms tend to associate together points which are similar, similar points
being close to one another in feature space. However, if the various features are measured in differ-
ent units, it is extremely difficult to select the metric which will yield a "correct" clustering of the
points. Thus, in this report I will consider an alternate approach involving clustering algorithms
which are invariant to scaling of the axes and hence to the choice of units. I will compare the
quality of the clustering produced by the various algorithms by using several test cases.

CLUSTERING ALGORITHMS

Duda and Hart [1] describe several algorithms which are invariant to nonsingular linear trans-
formations: y = A x, where y and x are d vectors and A is a d-by-d matrix which has a nonzero
determinant. These algorithms find a minimum of the determinant of the within-class scattering
matrix SW and a maximum of the trace S -I SB, where SB is the between-class scattering matrix:

w

minimize ISW I

and
d

maximize tr ISR B = X

where d is the dimensionality of the observation space and Xi are the eigenvalues of S 1 S B. The
scattering matrices are defined by the following relationships:

* The mean vector for the ith cluster is

i xeXi

where ni is the number of points in the ith cluster and Xi is the collection of points in the ith
cluster;
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* The total mean vector is

1 ~1 C

A- nE x jE nipi

where c is the number of clusters;

* The scatter matrix for the ith cluster is

Si= E (X-Zpi)(X-mi)t;
x e Xi

* The within-cluster scatter matrix is

C

w ZW Si;

* The between-cluster scatter matrix is

C

SB = E ni (pi - p) (pi -11) ;
i = 1

* The total scatter matrix is

ST =E (X - ,P) (X - 01t
x e X

It follows from these definitions that the total scatter matrix is the sum of the within-cluster
scatter matrix and the between-cluster scatter matrix:

ST =SW +SB-

Using this last equation, one can derive two other invariant criterion functions:

d

tr I ST' SW I / 1+p

and

15W1 d
= 11'ST Ii- 1 1 + xi

When there are only two clusters (one nonzero eigenvalue), the last three criteria will yield the same
partitioning. However, when there are more than two clusters, the partitionings may not be the
same.

My first attempts at investigating invariant clustering algorithms have been limited to minimiz-
ing the determinant of the within-class scattering matrix and variations of it.
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DETERMINANT OF WITHIN-CLASS SCATTERING MATRIX

Since it is essentially impossible (too time consuming) to evaluate the criterion function for
all possible partitions, I select an initial partition and then iteratively move points from one cluster
to another until a minimum or maximum is obtained. Thus, assuming an initial partitioning, I will
now state what happens to the various means and scattering matrices when a single point x * is
moved from the ith cluster to the jth cluster:

x*- /it
7Pi = Hi -

x* - Pi
P1i p'j nj + 1

Si* = Si - n 1 (x* H) (x* - Pi)t,

n.

Si*= Sj + J + - Pi) ( - Pi)t.

One should never remove x * from the ith cluster if it is presently the only point in the cluster.
Thus in my procedure one calculates the means, scattering matrix, and its determinant for an initial
partitioning of the points. Next, one tentatively moves each point from its present cluster to each of
the other clusters. If the determinant is smallest with x * in the jth cluster, one assigns x * to the jth
cluster. One then iteratively cycles through all n points until no points move from one cluster to
another. Of course such a procedure yields only a local minimum and not a global one. Therefore,
in my study I used 25 different random starting positions.

To visualize the quality of the clustering, I investigated only two-dimensional, two-class
problems. I chose the points in both classes from bivariate Gaussians with mean value Mi and
covariance matrix Ki, with the means and covariances for my four cases being as shown in Table 1.
In case 1, the clusters are well separated, and I would expect any clustering algorithm to yield the
correct solution. Case 2 is more difficult, with a spherical clustering being fairly close to an
elongated cluster. Case 3 is still more difficult, with the two clusters having the same mean but
larger variances in orthogonal directions. Case 4 is the most difficult, with the cluster embedded
within the other. I do not expect any clustering algorithm to yield the correct solution in this case,
since I cannot envision a function for which the correct partitioning is an extremum point.

I minimized the determinant of the within-cluster scattering matrix iteratively, and the results
for the four cases are shown in Fig. 1. The squares are from cluster 1, the diamonds are from cluster
2, and a cross in the square or diamond indicates that the point was classified incorrectly. In cases 1
and 2 the points were correctly classified, but in cases 3 and 4 the points were incorrectly classified.
In the 25 repetitions of case 1, two local minimums were found, and the smallest which corresponds
to the correct solution appeared 17 times. In case 2, three local minimums were found, and the
smallest which corresponds to the correct solution appeared eight times. In case 3, two local mini-
mums were found, but neither was associated with the correct solution, since the correct solution
was not even a local minimum. Similarly in case 4, five local minimums were found, but none was
associated with the correct solution, since the correct solution was not even a local minimum. As I

3



TRUNK

' +. (, ,^

C0
< Ga C

C.~~~~~~~~~~~~~~~~~~~9
Li

LiALI * LI

Ijb O El

(a) Case I (b) Case 2

r; I Li LI

*+ ~ ~ ~ ~ ~ ~ L Z;i C4

(c)0 Cs 3C0ig. 1-Clustering results for thel

0 0 ~ ~ CT2~ -
(a) Case 1 (b) Case 2

Fig. - Custerng rsultsfor he dtermiant f thesum f [h [ctern3atie

4



NRL REPORT 8678

Table 1 - Parameters of Bivariate Gaussians

mentioned, I do not expect case 4 to be correctly handled; however, I do expect cases 1, 2, and 3
to be correctly handled. Consequently, I attempted to modify the criterion function.

Although the determinant of a scatter matrix in some sense represents a volume containing
the points, it is not clear what geometric interpretation one can give to the determinant of the sum
of scatter matrices. Thus, an obvious modification* is to minimize the sum of the determinants:

c

min I ISi 1 .
i = 1

I again used iterative techniques to minimize the criterion function, and the results are given in
Fig. 2. Cases 1 and 3 were correctly handled, but many points in cases 2 and 4 were incorrectly
classified. In the 25 repetitions of case 1, three local minimums were found, and the smallest which
corresponds to the correct solution appeared 17 times. In case 2, four local minimums were found,
but none was associated with the correct solution, which was not even a local minimum. In case 3,
two local minimums were found, and the smallest which corresponds to the correct solution
appeared 15 times. Finally in case 4, five local minimums were found, none of which corresponded
to the correct solution. Intuitively, the reason the wrong solution was obtained for class 2 was that
the determinants of the individual scattering matrices were different by an order of magnitude.

*The proof that this algorithm is invariant to nonsingular linear transforms parallels the one showing min I SW I is
invariant [1].
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Class 1 Class 2

Case Mean | Covariance Mean Covariance
Vector Matrix Vector Matrix

1 0 1 0 0 1 0

0 0 1 5 0 1

2 0 10 0 0 1 0

0 0 1 5 0 1

3 0 10 0 0 1 0

0 0 1 0 0 10

4 0 10 0 0 1 0

0 0 10 0 0 1
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(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Fig. 2 - Clustering result for the sum of the determinants of the scattering matrices
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Thus, if one moves a few points from the large cluster to the small cluster, the determinant of the
small cluster may double, but the determinant of the large cluster may decrease by 10%, still result-
ing in a smaller criterion function. To remedy this situation, I considered a criterion function which
is the product of determinants.*

Specifically, I searched for the clustering which minimized

H Isi

and resulted in a nondegenerate solution. That is, if one puts all the points in one classs, the criter-
ion function will have a value of zero. Therefore, one desires a clustering which corresponds to a
local minimum of II I Si I whose value is the smallest value greater than zero. Again I minimized the
criterion function iteratively, and the results are given in Fig. 3. Although it appears that the
clusters in cases 1, 2, and 3 were correctly identified, this is somewhat misleading. The problem is
with case 1. The correct solution corresponds to the smallest nonzero local minimum, but all 25
random initial clusterings yielded degenerate solutions. In case 2, one nonzero local minimum was
found, and the solution which corresponds to the correct solution appeared 12 times. The other
13 times a degenerate solution was obtained. In case 3, three nonzero local minimums were found,
and the smallest which corresponds to the correct solution appeared eight times, the others just
once. The other 15 times a degenerate solution was obtained. In case 4, all solutions were degener-
ate solutions-the correct solution is not a local minimum. Thus, the problem with this procedure
apparently is that if clusters are "too" close to one another, there is a high probability of having a
degenerate solution. Surprisingly the results do not improve quickly as the separations increase.
Figure 4 represents case 1 with the separation in means increased from 5 to 10. However, although
the correct solution is found five times, a degenerate solution is found 20 times. One possible way
of proceeding is to cluster the points using H I Si 1. If only degenerate solutions are found, one can
switch then to either I E2Si I or E I Si I. Obviously, this procedure yields the correct solution to the
three simple cases (1, 2, and 3).

SUMMARY

Several invariant clustering algorithms based on scattering matrices have been investigated. No
single algorithm yielded the correct solution to all of the three simple clustering cases in this report.
One possible approach is to cluster the points using the product of the determinants of the scatter-
ing matrices and switch to the sum of the determinants if only degenerate solutions are found using
the product algorithm. This hybrid method yields the correct solution to the three simple clustering
cases.
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Fig. 3 -Clustering result for the product of determinants of the scattering matrices
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Fig. 4 - Clustering result for the product of determinants
of the scattering matrices when case 1 is modified by
increasing the separation of means from 5 to 10.
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